Sound localization in world and head-centered space in ferrets

Author:

Town Stephen M.ORCID,Bizley Jennifer K.ORCID

Abstract

AbstractThe location of sounds can be described in multiple coordinate systems that are defined relative to ourselves, or the world around us. World-centered hearing is critical for stable understanding of sound scenes, yet it is unclear whether this ability is unique to human listeners or generalizes to other species. Here, we establish novel behavioral tests to determine the coordinate systems in which non-human listeners (ferrets) can localize sounds. We found that ferrets could learn to discriminate sounds using either world-centered or head-centered sound location, as evidenced by their ability to discriminate locations in one space across wide variations in sound location in the alternative coordinate system. Using infrequent probe sounds to assess broader generalization of spatial hearing, we demonstrated that in both head and world-centered localization, animals used continuous maps of auditory space to guide behavior. Single trial responses of individual animals were sufficiently informative that we could then model sound localization using speaker position in specific coordinate systems and accurately predict ferrets’ actions in held-out data. Our results demonstrate that non-human listeners can thus localize sounds in multiple spaces, including those defined by the world that require abstraction across traditional, head-centered sound localization cues.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3