Classifying the Unknown: Identification of Insects by Deep Open-set Bayesian Learning

Author:

Badirli Sarkhan,Picard Christine J.,Mohler George,Akata Zeynep,Dundar Murat

Abstract

Insects represent a large majority of biodiversity on Earth, yet only 20% of the estimated 5.5 million insect species are currently described (1). While describing new species typically requires specific taxonomic expertise to identify morphological characters that distinguish it from other potential species, DNA-based methods have aided in providing additional evidence of separate species (2). Machine learning (ML) is emerging as a potential new approach in identifying new species, given that this analysis may be more sensitive to subtle differences humans may not process. Existing ML algorithms are limited by image repositories that do not include undescribed species. We developed a Bayesian deep learning method for the open-set classification of species. The proposed approach forms a Bayesian hierarchy of species around corresponding genera and uses deep embeddings of images and barcodes together to identify insects at the lowest level of abstraction possible. To demonstrate proof of concept, we used a database of 32,848 insect instances from 1,040 described species split into training and test data. The test data included 243 species not present in the training data. Our results demonstrate that using DNA sequences and images together, insect instances of described species can be classified with 96.66% accuracy while achieving accuracy of 81.39% in identifying genera of insect instances of undescribed species. The proposed deep open-set Bayesian model demonstrates a powerful new approach that can be used for the gargantuan task of identifying new insect species.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3