Principles governing the topological organization of object selectivities in ventral temporal cortex

Author:

Zhang Yiyuan,Zhou KeORCID,Bao Pinglei,Liu Jia

Abstract

SummaryTo achieve the computational goal of rapidly recognizing miscellaneous objects in the environment despite large variations in their appearance, our mind represents objects in a high-dimensional object space to provide separable category information and enable the extraction of different kinds of information necessary for various levels of the visual processing. To implement this abstract and complex object space, the ventral temporal cortex (VTC) develops different object-selective regions with certain topological organization as the physical substrate. However, the principle that governs the topological organization of object selectivities in the VTC remains unclear. Here, equipped with the wiring cost minimization principle constrained by the wiring length of neurons in human temporal lobe, we constructed a hybrid self-organizing map (SOM) model as an artificial VTC (VTC-SOM) to explain how the abstract and complex object space is faithfully implemented in the brain. In two in silico experiments with the empirical brain imaging and single-unit data, our VTC-SOM predicted the topological structure of fine-scale functional regions (face-, object-, body-, and place-selective regions) and the boundary (i.e., middle Fusiform Sulcus) in large-scale abstract functional maps (animate vs. inanimate, real-word large-size vs. small-size, central vs. peripheral), with no significant loss in functionality (e.g., categorical selectivity, a hierarchy of view-invariant representations). These findings illustrated that the simple principle utilized in our model, rather than multiple hypotheses such as temporal associations, conceptual knowledge, and computational demands together, was apparently sufficient to determine the topological organization of object-selectivities in the VTC. In this way, the high-dimensional object space is implemented in a two-dimensional cortical surface of the brain faithfully.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3