TET1 controls Cxcl1 induction by DNA demethylation and promotes neutrophil recruitment during acute lung injury

Author:

Yee Kathleen M.,Shuai Richard W.,Liu Bin,Huynh Christian A.,Niu Chao,Lee Hailey R.,Lee Min S.,Wen Jirui,Zou Jian,Wu Jiang,Shuai Ke

Abstract

AbstractNeutrophils are rapidly recruited from the peripheral blood to the inflammatory site to initiate inflammatory response against pathogenic infections. The process to recruit neutrophils must be properly regulated since the abnormal accumulation of neutrophils can cause organ damage and dysfunction. The acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a common cause of respiratory failure that is characterized by the infiltration of neutrophils and epithelial integrity disruption. Indeed, recent studies suggest a pathogenic role of neutrophils in the clinic severity of the coronavirus disease 2019 (COVID-19) ARDS. The chemokine CXCL1, which is rapidly induced by inflammatory stimuli, plays a key role in neutrophil influx during lung inflammation. The molecular basis of Cxcl1 induction is not fully understood. Here we report that TET1, a member of the ten eleven translocation (TET) methylcytosine dioxygenase protein family, displays a striking specificity in the regulation of gene expression in macrophages. RNA sequencing (RNA-seq) analysis showed that Tet1 disruption significantly altered the expression of only 48 genes that include Cxcl1 and several other genes known to be important for cell migration and trafficking in bone marrow derived macrophages (BMDMs) in response to LPS stimulation. TET1 regulates the induction of Cxcl1 by facilitating the DNA demethylation of the Cxcl1 promoter. In Tet1−/− mice, the induction of Cxcl1 was suppressed, resulting in defective neutrophil recruitment to the lung during LPS-induced acute lung injury. Our results identify a novel epigenetic mechanism that selectively controls Cxcl1 induction and neutrophil recruitment during acute lung injury.Key PointsTET1 has a striking specificity in macrophage gene regulation and controls Cxcl1 induction by inflammatory stimuli via DNA demethylationNeutrophil recruitment is defective in Tet1 deficient mice during acute lung injury

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3