Self-healing of hyaluronic acid to improve in vivo retention and function

Author:

Gilpin Anna,Zeng Yuze,Hoque Jiaul,Ryu Ji Hyun,Yang Yong,Zauscher Stefan,Eward William,Varghese Shyni

Abstract

AbstractConvergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials could surpass the capabilities of their parent material. Herein, we describe the modification of hyaluronic acid (HA) molecules to exhibit self-healing properties and studied its physical and biological function both in vitro and in vivo. Our in vitro findings showed that self-healing HA designed to undergo autonomous repair improved lubrication, enhanced free radical scavenging, and resisted enzymatic degradation compared to unmodified HA. Longitudinal imaging following intra-articular injection of self-healing HA showed improved in vivo retention despite the low molecular weight. Concomitant with these functions, intra-articular injection of self-healing HA mitigated anterior cruciate ligament injury-mediated cartilage degeneration in rodents. This proof-of-concept study shows how incorporation of functional properties like self-healing can be used to surpass the existing capabilities of biolubricants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3