Human metapneumovirus P protein independently drives phase separation and recruits N protein to liquid-like inclusion bodies

Author:

Boggs Kerri Beth,Cifuentes-Munoz Nicolas,Edmonds Kearstin,Najjar Farah El,Ossandón Conny,Roe McKenna,Moncman Carole L.,Creamer Trevor,Dutch Rebecca EllisORCID

Abstract

ABSTRACTHuman metapneumovirus (HMPV) inclusion bodies (IBs) are dynamic structures required for efficient viral replication and transcription. The minimum components needed to form IB-like structures in cells are the nucleoprotein (N) and the tetrameric phosphoprotein (P). HMPV P binds to two versions of N protein in infected cells: C-terminal P residues interact with oligomeric, RNA-bound N (N-RNA), and N-terminal P residues interact with monomeric N (N0) to maintain a pool of protein to encapsidate new RNA. Recent work on other negative-strand viruses has suggested that IBs are liquid-like organelles formed via liquid-liquid phase separation (LLPS). Here, HMPV IBs in infected or transfected cells were shown to possess liquid organelle properties, such as fusion and fission. Recombinant versions of HMPV N and P proteins were purified to analyze the interactions required to drive LLPS in vitro. Purified HMPV P was shown to form liquid droplets in the absence of other protein binding partners, a novel finding compared to other viral systems. Removal of nucleic acid from purified P altered phase separation dynamics, suggesting that nucleic acid interactions also play a role in IB formation. HMPV P also recruits monomeric N (N0-P) and N-RNA to IBs in vitro. These findings suggest that, in contrast to what has been reported for other viral systems, HMPV P acts as a scaffold protein to mediate multivalent interactions with monomeric and oligomeric HMPV N to promote phase separation of IBs.IMPORTANCEHuman metapneumovirus (HMPV) is a leading cause of respiratory disease among children, immunocompromised individuals, and the elderly. Currently, no vaccines or antivirals are available for treatment of HMPV infections. Cytoplasmic inclusion bodies (IBs), where HMPV replication and transcription occur, represent a promising target for the development of novel antivirals. The HMPV nucleoprotein (N) and phosphoprotein (P) are the minimal components needed for IB formation in eukaryotic cells. However, interactions that regulate the formation of these dynamic structures are poorly understood. Here, we showed that HMPV IBs possess the properties of liquid organelles and that purified HMPV P phase separates independently in vitro. Our work suggests that HMPV P phase separation dynamics are altered by nucleic acid. We provide strong evidence that, unlike results reported from other viral systems, HMPV P alone serves as a scaffold for multivalent interactions with monomeric (N0) and oligomeric (N-RNA) HMPV N for IB formation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3