Stable breast cancer prognosis

Author:

Li XiaomeiORCID,Liu Lin,Li Jiuyong,Le Thuc D.ORCID

Abstract

AbstractPredicting breast cancer prognosis helps improve the treatment and management of the disease. In the last decades, many prediction models have been developed for breast cancer prognosis based on transcriptomic data. A common assumption made by these models is that the test and training data follow the same distribution. However, in practice, due to the heterogeneity of breast cancer and the different environments (e.g. hospitals) where data are collected, the distribution of the test data may shift from that of the training data. For example, new patients likely have different breast cancer stage distribution from those in the training dataset. Thus these existing methods may not provide stable prediction performance for breast cancer prognosis in situations with the shift of data distribution. In this paper, we present a novel stable prediction method for reliable breast cancer prognosis under data distribution shift. Our model, known as Deep Global Balancing Cox regression (DGBCox), is based on the causal inference theory. In DGBCox, firstly high-dimensional gene expression data is transferred to latent network-based representations by a deep auto-encoder neural network. Then after balancing the latent representations using a proposed causality-based approach, causal latent features are selected for breast cancer prognosis. Causal features have persistent relationships with survival outcomes even under distribution shift across different environments according to the causal inference theory. Therefore, the proposed DGBCox method is robust and stable for breast cancer prognosis. We apply DGBCox to 12 test datasets from different breast cancer studies. The results show that DGBCox outperforms benchmark methods in terms of both prediction accuracy and stability. We also propose a permutation importance algorithm to rank the genes in the DGBCox model. The top 50 ranked genes suggest that the cell cycle and the organelle organisation could be the most relevant biological processes for stable breast cancer prognosis.Author summaryVarious prediction models have been proposed for breast cancer prognosis. The prediction models usually train on a dataset and predict the survival outcomes of patients in new test datasets. The majority of these models share a common assumption that the test and training data follow the same distribution. However, as breast cancer is a heterogeneous disease, the assumption may be violated in practice. In this study, we propose a novel method for reliable breast cancer prognosis when the test data distribution shifts from that of the training data. The proposed model has been trained on one dataset and applied to twelve test datasets from different breast cancer studies. In comparison with the benchmark methods in breast cancer prognosis, our model shows better prediction accuracy and stability. The top 50 important genes in our model provide clues to the relationship between several biological mechanisms and clinical outcomes of breast cancer. Our proposed method in breast cancer can potentially be adapted to apply to other cancer types.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3