Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development

Author:

Falcon Karla T.,Watt Kristin E.N.,Dash Soma,Achilleos Annita,Zhao Ruonan,Sakai Daisuke,Moore Emma L.,Fitriasari Sharien,Childers Melissa,Sardiu Mihaela E.,Swanson Selene,Tsuchiya Dai,Unruh Jay,Bugarinovic George,Li Lin,Shiang Rita,Dixon Jill,Dixon Michael J.,Trainor Paul A.

Abstract

AbstractRibosomal RNA (rRNA) transcription by RNA Polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies which frequently affect craniofacial development. Here, we present a cellular and molecular mechanism to explain the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCC), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCC particulalry sensitive to rRNA synthesis defects. Underpinning these findings, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which causes an imbalance between rRNA and ribosomal proteins. This leads to increased ribosomal protein binding to Mdm2 and concomitantly diminished Mdm2 binding to p53. Consequently, p53 protein accumulates, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbates the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins Syndrome and Acrofacial Dysostosis Cincinnati Type. Our novel results therefore demonstrate the dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of craniofacial congenital diseases.Significance statementRNA Polymerase I (Pol I) mediated rRNA transcription is required for protein synthesis in all tissues for normal growth and survival as well as for proper embryonic development. Interestingly, disruptions in Pol I mediated transcription perturb ribosome biogenesis and lead to tissue-specific birth defects, which commonly affect the head and face. Our novel results show that during mouse development, Pol I mediated rRNA transcription and protein translation is tissue-specifically elevated in neural crest progenitors and neural crest cells, which give rise to bone, cartilage, and ganglia of the head and face. Using new mouse models, we further show that neural crest cells are highly sensitive to disruptions in Pol I and that when rRNA synthesis is genetically downregulated, it specifically results in craniofacial anomalies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Neural Crest and Craniofacial Malformations;Clinical Neuroembryology;2023

2. Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development;Proceedings of the National Academy of Sciences;2022-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3