Real-world size of objects serves as an axis of object space

Author:

Huang TaichengORCID,Song Yiying,Liu Jia

Abstract

AbstractOur mind can represent various objects from the physical world metaphorically into an abstract and complex high-dimensional object space, with a finite number of orthogonal axes encoding critical object features. Previous fMRI studies have shown that the middle fusiform sulcus in the ventral temporal cortex separates the real-world small-size map from the large-size map. Here we asked whether the feature of objects’ real-world size constructed an axis of object space with deep convolutional neural networks (DCNNs) based on three criteria of sensitivity, independence and necessity that are impractical to be examined altogether with traditional approaches. A principal component analysis on features extracted by the DCNNs showed that objects’ real-world size was encoded by an independent component, and the removal of this component significantly impaired DCNN’s performance in recognizing objects. By manipulating stimuli, we found that the shape and texture of objects, rather than retina size, co-occurrence and task demands, accounted for the representation of the real-world size in the DCNNs. A follow-up fMRI experiment on humans further demonstrated that the shape, but not the texture, was used to infer the real-world size of objects in humans. In short, with both computational modeling and empirical human experiments, our study provided the first evidence supporting the feature of objects’ real-world size as an axis of object space, and devised a novel paradigm for future exploring the structure of object space.TeaserThis work provides the first evidence illuminating the feature of objects’ real-world size as an axis of the object space for object recognition with a mutually-inspired paradigm of computational modelling and biological observation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3