Unidirectional Single-File Transport of Full-Length Proteins Through a Nanopore

Author:

Yu Luning,Kang Xinqi,Li Fanjun,Mehrafrooz Behzad,Makhamreh Amr,Fallahi Ali,Aksimentiev Aleksei,Chen Min,Wanunu Meni

Abstract

AbstractNanopore technology offers long, accurate sequencing of an DNA or RNA strand via enzymatic ratcheting of the strand through a nanopore in single nucleotide steps, producing stepwise modulations of the nanopore ion current. In contrast to nucleic acids, their daughter molecules, proteins, have neutral peptide backbones and side chains of varying charges. Further, proteins have stable secondary and higher order structures that obstruct protein linearization required for single file nanopore transport. Here, we describe a general approach for realizing unidirectional transport of proteins through a nanopore that neither requires the protein to be uniformly charged nor a pull from a biological enzyme. At high concentrations of guanidinium chloride, we find fulllength proteins to translocate unidirectionally through an a-hemolysin nanopore in a polymer-based membrane, provided that one of the protein ends is decorated with a short anionic peptide. Molecular dynamics simulations show that such surprisingly steady protein transport is driven by a giant electro-osmotic effect caused by binding of guanidinium cations to the inner surface of the nanopore. We show that ionic current signals produced by protein passage can be used to distinguish two biological proteins and the global orientation of the same protein (N-to-C vs. C-to-N terminus) during the nanopore transport. With the average transport rate of one amino acid per 10 μs, our method may enable direct enzyme-free protein fingerprinting or perhaps even sequencing when combined with a high-speed nanopore reader instrument.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3