Donor Macrophages Modulate Rejection after Heart Transplantation

Author:

Kopecky BJ,Dun H,Amrute JM,Lin CY,Bredemeyer AL,Terada Y,Bayguinov PO,Koenig AL,Frye CC,Fitzpatrick JAJ,Kreisel D,Lavine KJ

Abstract

AbstractBackgroundCellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T-cells, and have a multitude of adverse effects. The innate immune response plays an essential role in the recruitment and activation of T-cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge regarding donor immune cell types and functions in the setting of cardiac transplantation and no current therapeutics exist for targeting these cell populations.MethodsUsing genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and function during acute cellular rejection of transplanted hearts in mice. We performed single cell RNA sequencing on donor and recipient macrophages, dendritic cells, and monocytes at multiple timepoints after transplantation. Based on our single cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ and CCR2- macrophages using selective cell ablation strategies in donor grafts prior to transplant. Finally, we perform functional validation of our single cell-derived hypothesis that donor macrophages signal through MYD88 to facilitate cellular rejection.ResultsDonor macrophages persisted in the transplanted heart and co-existed with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity amongst recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. While selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages were being activated through MYD88/NF-ĸβ signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen presenting cell recruitment, decreased emergence of allograft reactive T-cells, and extended allograft survival.ConclusionsDistinct populations of donor and recipient macrophages co-exist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection and inhibition of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. OPTN/SRTR 2016 Annual Data Report: Heart;Am J Transplant,2018

2. Survival Outcomes After Heart Transplantation: Does Recipient Sex Matter?;Circ Heart Fail,2019

3. Immunosuppression following heart transplantation: prospects and challenges

4. Alba, A.C. , et al., Complications after Heart Transplantation: Hope for the Best, but Prepare for the Worst. International Journal of Transplantation Research and Medicine, 2016. 2(2).

5. Advances and challenges in immunotherapy for solid organ and hematopoietic stem cell transplantation;Sci Transl Med,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3