Representation of motion concepts in occipitotemporal cortex: fMRI activation, decoding and connectivity analyses

Author:

Zhang Yueyang,Lemarchand Rafael,Asyraff Aliff,Hoffman Paul

Abstract

AbstractEmbodied theories of semantic cognition predict that brain regions involved in motion perception are engaged when people comprehend motion concepts expressed in language. Left lateral occipitotemporal cortex (LOTC) is implicated in both motion perception and motion concept processing but prior studies have produced mixed findings regarding which parts of this region are engaged by motion language. We scanned participants performing semantic judgements about sentences describing motion events and static events. We performed univariate analyses, multivariate pattern analyses (MVPA) and psychophysiological interaction (PPI) analyses to investigate the effect of motion on activity and connectivity in different parts of LOTC. In multivariate analyses that decoded whether a sentence described motion or not, the whole of LOTC showed above-chance level performance, with performance exceeding that of other brain regions. Univariate ROI analyses found that the middle part of LOTC was more active for motion events than static ones. Finally, PPI analyses found that when processing motion events, the middle and posterior parts of LOTC, overlapping with motion perception regions, increased their connectivity with cognitive control regions. Taken together, these results indicate that the whole of the LOTC responds differently to motion vs. static event descriptions, and that these effects are most pronounced in more posterior sites. These findings are consistent with embodiment accounts of semantic processing, and suggest that understanding verbal descriptions of motion engages areas of the occipitotemporal cortex involved in perceiving motion.

Publisher

Cold Spring Harbor Laboratory

Reference83 articles.

1. A fast diffeomorphic image registration algorithm

2. Ashburner, J. , Barnes, G. , Chen, C.-C. , Daunizeau, J. , Flandin, G. , Friston, K. , Kiebel, S. , Kilner, J. , Litvak, V. , & Moran, R. (2014). SPM12 manual. Wellcome Trust Centre for Neuroimaging, London, UK, 2464.

3. Functional Interactions during the Retrieval of Conceptual Action Knowledge: An fMRI Study

4. Stimulus-independent neural coding of event semantics: Evidence from cross-sentence fMRI decoding;Neuroimage,2021

5. Situated simulation in the human conceptual system

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3