SMAD4 target genes are part of a transcriptional network that integrates the response to BMP and SHH signaling during early limb bud patterning

Author:

Gamart Julie,Barozzi IrosORCID,Laurent FrédéricORCID,Reinhardt Robert,Martins Laurène Ramos,Oberholzer Thomas,Visel AxelORCID,Zeller RolfORCID,Zuniga AiméeORCID

Abstract

ABSTRACTSMAD4 regulates gene expression in response to BMP and TGFβ signal transduction and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we use an epitope-tagged Smad4 allele for ChIP-seq analysis together with transcriptome analysis of wild-type and mouse forelimb buds lacking Smad4 in the mesenchyme. This analysis identifies the SMAD4 target genes during establishment of the feedback signaling system and establishes that SMAD4 predominantly mediates BMP signal-transduction during early limb bud development. Unexpectedly, the initial analysis reveals that the expression of cholesterol biosynthesis enzymes is precociously down-regulated and intracellular cholesterol levels reduced in Smad4-deficient limb bud mesenchymal progenitors. The SMAD4 target GRNs includes genes, whose expression in the anterior limb bud is up-regulated by interactions of SMAD4 complexes with enhancers active in the anterior mesenchyme. This reveals a predominant function of SMAD4 in up-regulating target gene expression in the anterior limb bud mesenchyme. Analysis of differentially expressed genes that are shared between Smad4- and Shh-deficient limb buds corroborates the positive role of SMAD4 in transcriptional regulation of anterior genes and reveals a repressive effect on posterior genes that are positively regulated by SHH signaling. This analysis uncovers the overall opposing effects of SMAD4-mediated BMP and SHH signalling on transcriptional regulation during early limb bud development. In summary, this analysis indicates that during early digit patterning and limb bud outgrowth, the anterior/proximal and proximo/distal expression dynamics of co-regulated genes are controlled by distinct and contrasting trans-regulatory inputs from SHH and SMAD4-mediated BMP signal transduction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3