Phosphorus is a critical factor of the in vitro monoxenic culture method for a wide range of arbuscular mycorrhizal fungi culture collections

Author:

Sato Takumi,Suzuki Kenta,Usui Erika,Ichihashi Yasunori

Abstract

AbstractEstablishing an effective way to propagate a wide range of arbuscular mycorrhizal (AM) fungi species is desirable for mycorrhizal research and agricultural applications. Although the success of mycorrhizal formation is required for spore production of AM fungi, the critical factors for its construction in the in vitro monoxenic culture protocol remain to be identified. In this study, we evaluated the growth of hairy roots from carrot, flax, and chicory, and investigated the effects of the phosphorus (P) concentration in the mother plate, as well as the levels of P, sucrose, and macronutrients in a cocultivation plate with a hairy root, amount of medium of the cocultivation plate, and location of spore inoculation, by utilizing the Bayesian information criterion model selection with greater than 800 units of data. We found that the flax hairy root was suitable for in vitro monoxenic culture, and that the concentration of P in the cocultivation plate was a critical factor for mycorrhizal formation. We showed that an extremely low concentration of P (3 μM) significantly improved mycorrhizal formation for AM fungi belonging to the Glomerales order, while a high concentration of P (30 μM) was suitable for Diversisporales fungi. Therefore, we anticipate that the refining the P concentration will contribute to future culture collections of a wide range of AM fungi.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Model selection for ecologists: the worldviews of AIC and BIC

2. Field response of wheat to arbuscular mycorrhizal fungi and drought stress

3. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis;Mycorrhiza,2014

4. Early events of vesicular–arbuscular mycorrhiza formation on Ri T‐DNA transformed roots

5. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes;Frontiers in Microbiology,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3