RUNIMC: An R-based package for imaging mass cytometry data analysis and pipeline validation

Author:

Dolcetti Luigi,Barber Paul R,Weitsman Gregory,Thavaraj Selvam,Ng Kenrick,Chan Julie Nuo En,Patten Piers,Mustapha Rami,Deng Jinhai,Ng Tony

Abstract

ABSTRACTWe propose a novel pipeline for the analysis of imaging mass cytometry data, comparing an unbiased approach, representing the actual gold standard, with a novel biased method. We made use of both synthetic/ controlled datasets as well as two datasets obtained from FFPE sections of follicular lymphoma, and head and neck patients, stained with a 14 and 29-markers panels respectively. The novel pipeline, denominated RUNIMC, has been completely developed in R and contained in a single package. The novelty resides in the ease with which multi-class random forest classifier can be used to classify image features, making the pathologist’s and expert classification pivotal, and the use of a random forest regression approach that permits a better detection of cell boundaries, and alleviates the necessity of relying on a perfect nuclear staining.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3