A Genotype-to-Phenotype Modeling Framework to Predict Human Pathogenicity of Novel Coronaviruses

Author:

Davis Phillip,Russell Joseph A.ORCID

Abstract

AbstractLeveraging prior viral genome sequencing data to make predictions on whether an unknown, emergent virus harbors a ‘phenotype-of-concern’ has been a long-sought goal of genomic epidemiology. A predictive phenotype model built from nucleotide-level information alone has previously been considered un-tenable with respect to RNA viruses due to the ultra-high intra-sequence variance of their genomes, even within closely related clades. Building from our prior work developing a degenerate k-mer method to accommodate this high intra-sequence variation of RNA virus genomes for modeling frameworks, and leveraging a taxonomic ‘group-shuffle-split’ paradigm on complete coronavirus assemblies from prior to October 2018, we trained multiple regularized logistic regression classifiers at the nucleotide k-mer level capable of accurately predicting withheld SARS-CoV-2 genome sequences as human pathogens and accurately predicting withheld Swine Acute Diarrhea Syndrome coronavirus (SADS-CoV) genome sequences as non-human pathogens. LASSO feature selection identified several degenerate nucleotide predictor motifs with high model coefficients for the human pathogen class that were present across widely disparate classes of coronaviruses. However, these motifs differed in which genes they were present in, what specific codons were used to encode them, and what the translated amino acid motif was. This emphasizes the importance of a phenetic view of emerging pathogenic RNA viruses, as opposed to the canonical phylogenetic interpretations most-commonly used to track and manage viral zoonoses. Applying our model to more recent Orthocoronavirinae genomes deposited since October 2018 yields a novel contextual view of pathogen-potential across bat-related, canine-related, porcine-related, and rodent-related coronaviruses and critical adaptations which may have contributed to the emergence of the pandemic SARS-CoV-2 virus. Finally, we discuss the utility of these predictive models (and their associated predictor motifs) to novel biosurveillance protocols that substantially increase the ‘pound-for-pound’ information content of field-collected sequencing data and make a strong argument for the necessity of routine collection and sequencing of zoonotic viruses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3