A science friction story – Molecular interactions in semiflexible polymer networks

Author:

Mollenkopf Paul,Prascevic Dusan,Glaser Martin,Smith David M.,Schnauß Jörg

Abstract

AbstractEstablished model theories, developed to capture the mechanical behavior of soft complex materials composed of semiflexible polymers assume entropic interactions between filaments to determine the mechanical response. In recent studies, the general accepted tube model has been challenged in terms of its basic assumption about filament-filament interactions, but also because of its predictions regarding the frequency dependence of the elastic modulus in the intermediate frequency regime. A central question is how molecular interactions and friction between network constituents influence the rheological response of isotropic entangled networks of semiflexible polymers. It was shown that friction forces between aligned pairs of actin filaments are not negligible. Here, we systematically investigate the influence of friction forces and attractive interactions on network rheology by means of a targeted surface modification. We show that these forces have a qualitative and quantitative influence on the viscoelastic properties of semiflexible polymer networks and contribute to the response to nonlinear deformations. By comparing two polymer model systems with respect to their surface compositions we give a possible explanation about the origin of acting forces on a molecular level.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3