HIV-1 Vif protein is stabilized by AKT-mediated phosphorylation to enhance APOBEC3G degradation

Author:

Raja RameezORCID,Wang Chenyao,Banerjea Akhil C

Abstract

AbstractHIV-1 virus has to counter anti-viral restriction factors for its successful replication after its entry in the cell. The host-pathogen dynamics operate as soon as HIV-1 interacts with the cell. HIV-1 Vif has been known for its role in degradation of APOBEC3G; a cytosine deaminase which leads to hyper mutations in the viral DNA leading to aberrant viral replication. The cellular proteins regulating the intracellular HIV-1 Vif protein levels can have profound impact on HIV-1 pathogenesis. MDM2 is known to induce degradation of Vif with subsequent effects on APOBEC3G. Here, we have identified AKT/PKB as one of the crucial regulators of HIV-1 Vif protein. The rationale for selecting Vif as a target substrate for AKT was the presence of RMRINT motif in it, which is similar to the AKT phosphorylation motif RxRxxS/T. Immunoprecipitation assay and Kinase assay revealed that AKT and Vif interact strongly with each other and Vif is phosphorylated at T20 position by AKT. This phosphorylation stabilizes HIV-1 Vif while Vif mutant T20A degrades faster. Moreover, use of dominant negative form of AKT (KD-AKT) and AKT inhibitors were found to destabilise Vif and increase its K48-ubiquitination profile. The consequences of this AKT-Vif interplay were also validated on APOBEC3G degradation, a target of Vif. AKT inhibition was found to restore APOBEC3G levels. This process can be interpreted as a strategy used by virus to prevent MDM2 mediated Vif degradation; AKT stabilises Mdm2, which then targets Vif for degradation but at the same time AKT stabilises Vif by phosphorylating it. Thus, AKT mediated stabilization of Vif might compensate for its degradation by MDM2. This study can have significant implications as HIV-1 Tat protein and growth factors like insulin activate PI3-K/AKT Kinase pathway and can potentially affect Vif and APOBEC3G protein levels and hence HIV-1 pathogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3