Abstract
AbstractCellular transmembrane (TM) proteins are essential sentries of the cell facilitating cell-cell communication, internal signaling, and solute transport. Reconstituting functional TM proteins into model membranes remains a challenge due to the difficulty of expressing hydrophobic TM domains and the required use of detergents. Herein, we use a intein-mediated ligation strategy to semisynthesize bitopic TM proteins in synthetic membranes. We have adapted the trans splicing capabilities of split inteins for a native peptide ligation between a synthetic TM peptide embedded in the membrane of giant unilamellar vesicles (GUVs) and an expressed soluble protein. We demonstrate that the extracellular domain of programmed cell death protein 1 (PD-1), a mammalian transmembrane immune checkpoint receptor, retains its function for binding its ligand PD-L1 at a reconstituted membrane interface after ligation to a synthetic TM peptide in GUV membranes. We envision that the construction of full-length TM proteins using orthogonal split intein-mediated semisynthetic protein ligations will expand applications of membrane protein reconstitution in pharmacology, biochemistry, biophysics, and artificial cell development.
Publisher
Cold Spring Harbor Laboratory