Glycosaminoglycans Modulate Long-Range Mechanical Communication Between Cells in Collagen Networks

Author:

Chen Xingyu,Chen Dongning,Ban Ehsan,Janmey Paul A.,Wells Rebecca G.,Shenoy Vivek B.

Abstract

AbstractCells can sense and respond to mechanical forces in fibrous extracellular matrices (ECM) over distances much greater than their size. This phenomenon, termed long-range force transmission, is enabled by the realignment (buckling) of collagen fibers along directions where the forces are tensile (compressive). However, whether other key structural components of the ECM, in particular glycosaminoglycans (GAGs), can affect the efficiency of cellular force transmission remains unclear. Here we developed a theoretical model of force transmission in collagen networks with interpenetrating GAGs, capturing the competition between tension-driven collagen-fiber alignment and the swelling pressure induced by GAGs. Using this model, we show that the swelling pressure provided by GAGs increases the stiffness of the collagen network by stretching the fibers in an isotropic manner. We found that the GAG-induced swelling pressure can help collagen fibers resist buckling as the cells exert contractile forces. This mechanism impedes the alignment of collagen fibers and decreases long-range cellular mechanical communication. We experimentally validated the theoretical predictions by comparing collagen fiber alignment between cellular spheroids cultured on collagen gels versus collagen-GAG co-gels. We found significantly less alignment of collagen in collagen-GAG co-gels, consistent with the prediction that GAGs can prevent collagen fiber alignment. The roles of GAGs in modulating force transmission uncovered in this work can be extended to understand pathological processes such as the formation of fibrotic scars and cancer metastasis, where cells communicate in the presence of abnormally high concentrations of GAGs.Statement of significanceGlycosaminoglycans (GAGs) are carbohydrates that are expressed ubiquitously in the human body and are among the key macromolecules that influence development, homeostasis, and pathology of native tissues. Abnormal accumulation of GAGs has been observed in metabolic disorders, solid tumors, and fibrotic tissues. Here we theoretically and experimentally show that tissue swelling caused by the highly polar nature of GAGs significantly affects the mechanical interactions between resident cells by altering the organization and alignment of the collagenous extracellular matrix. The roles of GAGs in modulating cellular force transmission revealed here can guide the design of biomaterial scaffolds in regenerative medicine and provides insights on the role of cell-cell communication in tumor progression and fibrosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3