Spatiotemporal components of sustained functional hyperemia are differentially modulated by locomotion and silenced with vascular chemogenetics

Author:

Peringod GovindORCID,Yu LinhuiORCID,Murari KartikeyaORCID,Gordon Grant RORCID

Abstract

ABSTRACTNeural activity underlying sensation, movement or cognition drives regional blood flow enhancement – termed functional hyperemia – to increase the oxygen supply to respiring cells for as long as needed to meet energy demands. However, functional hyperemia is often studied under anesthesia which typically yields response profiles that appear temporally and spatially homogenous. We have insufficient understanding of the underlying kinetics of oxygen delivery in awake animals, especially during specific behaviours that may influence neurally-driven enhancements in cerebral blood flow. Using widefield intrinsic optical signal imaging in awake, head-fixed but active mice, we demonstrated distinct early and late components to changes in intravascular oxygenation in response to sustained (30s) whisker stimulation. We found that the late component (20-30s), but not the early component (1-5s), was strongly influenced by level of whisking/locomotion in the region of highest response and in surrounding regions. Optical flow analyses revealed complex yet stereotyped spatial properties of the early and late components that were related to location within the optical window and the initial state of the cerebral vasculature. In attempt to control these complex response characteristics, we drove a canonical microvasculature constriction pathway using mural cell Gq-chemogenetic mice. A low-dose of systemic C21 strongly limited both the magnitude and spatial extent of the sensory-evoked hemodynamic response, showing that functional hyperemia can be severely limited by direct mural cell activation. These data provide new insights into the cerebral microcirculation in the awake state and may have implications for interpreting functional imaging data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3