A model-guided pipeline for drug cardiotoxicity screening with human stem-cell derived cardiomyocytes

Author:

Clark Alexander P.,Wei Siyu,Krogh-Madsen Trine,Christini David J.

Abstract

ABSTRACTNew therapeutic compounds go through a preclinical drug cardiotoxicity screening process that is overly conservative and provides limited mechanistic insight, leading to the misclassification of potentially beneficial drugs as proarrhythmic. There is a need to develop a screening paradigm that maintains this high sensitivity, while ensuring non-cardiotoxic compounds pass this phase of the drug approval process. In this study, we develop an in vitro-in silico pipeline using human induced stem-cell derived cardiomyocytes (iPSC-CMs) to address this problem. The pipeline includes a model-guided optimization that produces a voltage-clamp (VC) protocol to determine drug block of seven cardiac ion channels. Such VC data, along with action potential (AP) recordings, were acquired from iPSC-CMs before and after treatment with a control solution or a low-, intermediate-, or high-risk drug. We identified significant AP prolongation (a proarrhythmia indicator) in two high-risk drugs and, from the VC data, determined strong ion channel blocks that led to the AP changes. The VC data also uncovered an undocumented funny current (If) block by quinine, which we confirmed with experiments using a HEK-293 expression line. We present a new approach to cardiotoxicity screening that simultaneously evaluates proarrhythmia risk (e.g. AP prolongation) and mechanism (e.g. channel block) from iPSC-CMs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3