Abstract
ABSTRACTMultiple mouse models have been generated that strive to recapitulate human Alzheimer’s disease (AD) pathological features to investigate disease mechanisms and potential treatments. The 3xTg-AD mouse presents the two major hallmarks of AD, which are plaques and tangles that increase during aging. While behavioral changes and the accumulation of plaques and tangles have been well described in the 3xTg-AD mice, the subpopulations of neurons and glial cells present throughout disease progression have not been characterized. Here, we used single-cell RNA-seq to investigate changes in subpopulations of microglia, and single-nucleus RNA-seq to explore subpopulations of neurons, astrocytes, and oligodendrocytes in the hippocampus and cortex of aging 3xTg-AD as well as 5xFAD mice for comparison. We recovered a common path of age-associated astrocyte activation between the 3xTg-AD and the 5xFAD models and found that 3xTg-AD-derived astrocytes seem to be less activated. We identified multiple subtypes of microglia, including a subpopulation with a distinct transcription factor expression profile that showed an early increase in Csf1 expression before the switch to disease associated microglia (DAM). We used bulk RNA-seq in the hippocampus of 3xTg-AD mice across their lifespan to identify distinct modules of genes whose expression increases with aging and worsening pathology. Finally, scATAC-seq revealed multiple subpopulations of cells with accessible chromatin in regions around genes associated with glial activation. Overall, differences between the main glial groups point to a slower activation process in the 3xTg-AD model when compared to the 5xFAD. Our study contributes to the identification of progressive transcriptional changes of glial cells in a mouse model that has plaques and tangles, thus providing information to aid in targeted AD therapeutics that could translate into positive clinical outcomes.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献