Proximal CA3 is the primary locus of age-related pattern separation deficits in rats

Author:

Lee Heekyung,Tilekeratne Arjuna,Lukish Nick,Wang Zitong,Zeger Scott,Gallagher Michela,Knierim James J.

Abstract

AbstractAge-related deficits in pattern separation have been postulated to bias the output of hippocampal memory processing toward pattern completion, which can cause deficits in accurate memory retrieval. While the CA3 region of the hippocampus is often conceptualized as a homogeneous network involved in pattern completion, growing evidence demonstrates a functional gradient in CA3 along the transverse axis, with proximal CA3 supporting pattern separation and distal CA3 supporting pattern completion. We examined the neural representations along the CA3 transverse axis in young (Y), aged memory-unimpaired (AU), and aged memory-impaired (AI) rats when different changes were made to the environment. When the environmental similarity was high (e.g., altered cues or altered environment shapes in the same room), Y and AU rats showed more orthogonalized representations in proximal CA3 than in distal CA3, consistent with prior studies showing a functional dissociation along the transverse axis of CA3. In contrast, AI rats showed less orthogonalization in proximal CA3 than Y and AU rats but showed more normal (i.e., generalized) representations in distal CA3, with little evidence of a functional gradient. When the environmental similarity was low (e.g., recordings were done in different rooms), representations in proximal and distal CA3 remapped in all rats, showing that AI rats are able to dissociate representations when inputs show greater dissimilarity. These results provide evidence that the aged-related bias towards pattern completion is due to the loss in AI rats of the normal transition from pattern separation to pattern completion along the CA3 transverse axis and, furthermore, that proximal CA3 is the primary locus of this age-related dysfunction in neural coding.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3