A machine vision based frailty index for mice

Author:

Hession Leinani E.,Sabnis Gautam S.,Churchill Gary A.,Kumar VivekORCID

Abstract

1AbstractChronological aging is uniform, but biological aging is heterogeneous. Clinically, this heterogeneity manifests itself in health status and mortality, and it distinguishes healthy from unhealthy aging. Clinical frailty indexes (FIs) serve as an important tool in gerontology to capture health status. FIs have been adapted for use in mice and are an effective predictor of mortality risk. To accelerate our understanding of biological aging, high-throughput approaches to pre-clinical studies are necessary. Currently, however, mouse frailty indexing is manual and relies on trained scorers, which imposes limits on scalability and reliability. Here, we introduce a machine learning based visual frailty index (vFI) for mice that operates on video data from an open field assay. We generate a large mouse FI datasets comprising 256 males and 195 females. From video data on these same mice, we use neural networks to extract morphometric, gait, and other behavioral features that correlate with manual FI score and age. We use these features to train a regression model that accurately predicts frailty within 1.03 ± 0.08 (3.9% ± 0.3%) of the pre-normalized FI score in terms of median absolute error. We show that features of biological aging are encoded in open-field video data and can be used to construct a vFI that can complement or replace current manual FI methods. We use the vFI data to examine sex-specific aspects of aging in mice. This vFI provides increased accuracy, reproducibility, and scalability, that will enable large scale mechanistic and interventional studies of aging in mice.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Accumulation of Deficits as a Proxy Measure of Aging;TheScientificWorldJournal,2001

2. A clinical frailty index in aging mice: comparisons with frailty index data in humans;Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences,2014

3. Frailty in elderly people: an evolving concept;CMAJ,1994

4. Age and life expectancy clocks based on machine learning analysis of mouse frailty;Nature communications,2020

5. A standard procedure for creating a frailty index;BMC geriatrics,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3