Structural insights on the effects of mutation of a charged binding pocket residue on phosphopeptide binding to 14-3-3 ζ Protein

Author:

Sreevidya T SORCID,Dalvi Somavally,Venkataraman PrasannaORCID,Vemparala SatyavaniORCID

Abstract

Mutation of an invariant aspartate residue in the binding pocket of 14-3-3ζ isoform to alanine dramatically reduced phosphopeptide binding and induced opening of the binding pocket. Here we use extensive molecular dynamics simulations to understand the role of D124 residue in ligand binding. The simulations show that in the absence of phosphopeptide, the D124A mutation leads to binding pocket reorganization including widening up of the binding pocket at the major groove and repositioning of N173, a key residue that interacts with the main chain of phosphopeptide. These structural changes would interfere with the efficient binding of the peptide, corroborating the experimental observations. Both gain and loss of electrostatic interactions in the form of salt bridges strongly indicate a rearrangement of the network of interactions within the binding pocket. Limited proteolysis coupled mass spectrometry (lip-MS) of the apo and holo forms of WT and mutant protein shows a peptide binding helix otherwise buried in the WT protein was particularly accessible to trypsin in the apo form of the mutant protein and the region was mapped to 158-186 amino acid residues of 14-3-3ζ). These results further confirm the dynamic nature of D124A mutant. Unlike other basic residues, the invariant D124 facilitates peptide binding by maintaining the geometry of interacting residues and by enforcing the structural integrity of amphipathic pocket.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3