Unstable periodic orbits are faithful biomarker for the onset of epileptic seizure

Author:

Pal MayukhaORCID,Bhattacherjee Sree,Panigrahi Prasanta K.

Abstract

AbstractEEG signals of healthy individuals and epileptic patients, when treated as time series of evolving dynamical systems, are found to display characteristic differences in the behavior of the unstable periodic orbits (UPO), marking the transition from regular periodic variations to self-similar dynamics. The UPO, manifesting as broad resonances in the Fourier power spectra, are quite prominent in their presence in the normal signals and are either absent or considerably weakened with a shift towards lower frequency in the epileptic condition. The weighted average and visibility power computed for the UPO region are found to distinguish epileptic seizure from healthy individuals’ EEG. Remarkably, the unstable periodic motion for healthy ones is well described by damped harmonic motion, the orbits displaying smooth dynamics. In contrast, the epileptic cases show bi-stability and piecewise linear motion for the larger orbits, exhibiting large sudden jumps in the ‘velocity’ (referred to the rate of change of the EEG potentials), characteristically different from the healthy cases, highlighting the efficacy of the UPO as biomarkers. For both the regions, 8-14Hz UPO and 40-45Hz resonance, we used data driven analysis to derive the system dynamics in terms of sinusoidal functions, which reveal the presence of higher harmonics, confirming nonlinearity of the underlying system and leading to quantification of the discernible differences between the healthy and epileptic patients. The gamma wave region in the 40-45Hz range, connecting the conscious and the unconscious states of the brain, reveals well-structured coherence phenomena, in addition to the prominent resonance, which potentially can be used as a biomarker for the epileptic seizure. The wavelet scalogram analysis for both UPO and 40-45Hz region also clearly differentiates the healthy condition from epileptic seizure, confirming the above dynamical picture, depicting the higher harmonic generation, and intermixing of different modes in these two regions of interest.SignificanceUnstable periodic orbits are demonstrated as faithful biomarkers for detecting seizure, being prominently present in the Fourier power spectra of the EEG signals of the healthy individuals and either being absent or significantly suppressed for the epileptic cases, showing distinctly different behavior for the unstable orbits, in the two cases. A phase space study, with EEG potential and its rate of change as coordinate and corresponding velocity, clearly delineates the dynamics in healthy and diseased individuals, demonstrating the absence or weakening of UPO, that can be a reliable bio-signature for the epileptic seizure. The phase-space analysis in the gamma region also shows specific signatures in the form of coherent oscillations and higher harmonic generation, further confirmed through wavelet analysis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3