Abstract
AbstractThe pseudoautosomal region 1 (PAR1) is a 2.7 Mb telomeric region of human sex chromosomes. As the largest point of contact between the X and Y, PAR1 has a crucial role in ensuring proper segregation of sex chromosomes during male meiosis, exposing it to extreme recombination and associated mutational processes. We investigate PAR1 evolution using population genomic datasets of extant humans, eight populations of great apes and two archaic human genome sequences. We find that the PAR1 sequence is closer to nucleotide equilibrium than autosomal telomeric sequences. We detect a difference between long-term substitution patterns and extant diversity in PAR1 that is mainly driven by the conflict between strong mutation and recombination-associated fixation bias at CpG sites. Additionally, we detect excess C→G mutations in PAR1 of all great ape species, specific to the mutagenic effect of male recombination. Analysis of differences between frequencies of alleles segregating in females and males provided no evidence for sexually antagonistic selection in this region. Furthermore, despite recent evidence for Y chromosome introgression from humans into Neanderthals, we find that the Neanderthal PAR1 retained similarity to the Denisovan sequence, as is the case for the X chromosome and the autosomes. Lastly, we study repeat content and double-strand break hotspot regions in PAR1 and find that they may play roles in ensuring the obligate X-Y recombination event during male meiosis. Our study provides an unprecedented quantification of population genetic forces and insight into evolutionary processes governing PAR1 biology.
Publisher
Cold Spring Harbor Laboratory