Insight into mammary gland development and tumor prevention in a newly developed metastatic mouse model of breast cancer

Author:

To Briana,Broeker Carson,Jhan Jing-Ru,Rempel Rachel,Rennhack Jonathan P.,Hollern Daniel,Jackson Lauren,Judah David,Swiatnicki Matt,Bylett Evan,Kubiak Rachel,Honeysett Jordan,Reaz Shams,Nevins Joseph,Andrechek Eran

Abstract

AbstractThe development of breast cancer has been observed due to altered regulation of mammary gland developmental processes. Thus, a better understand of the normal mammary gland development can reveal possible mechanism in how normal cells are re-programmed to become malignant cells. E2F1-4 are part of the E2F transcription factor family with varied roles in mammary development. However, little is known about the role of E2F5 in mammary gland development. A combination of scRNAseq and predictive signature tools demonstrate the presence of E2F5 in the mammary gland and showed altered activity during the various phases of mammary gland development and function. Testing the hypothesis that E2F5 regulates mammary function, we generated a mammary-specific E2F5 knockout mouse model, resulting in modest mammary gland development changes. However, after a prolonged latency the E2F5 conditional knockout mice developed highly metastatic mammary tumors with metastases in both the lung and liver. Transplantation of the tumors revealed metastases to lymph nodes that was enriched through serial transplantation. Through whole genome sequencing and RNAseq analysis we identified, and then confirmed in vivo, that Cyclin D1 was dysregulated in E2F5 conditional knockout mammary glands and tumors. Based on these findings, we propose that loss of E2F5 leads altered regulation of Cyclin D1, which facilitates the development of mammary tumors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3