Abstract
AbstractRecently, decoding human electroencephalographic (EEG) data using convolutional neural network (CNN) has driven the state-of-the-art recognition of motor-imagery EEG patterns for brain-computer interfacing (BCI). While a variety of CNN models have been used to classify motor-imagery EEG data, it is unclear if aggregating an ensemble of heterogeneous CNN models could further enhance the classification performance. To integrate the outputs of ensemble classifiers, this work utilizes fuzzy integral with particle swarm optimization (PSO) to estimate optimal confidence levels assigned to classifiers. The proposed frame-work aggregates CNN classifiers and fuzzy integral with PSO, achieving robust performance in single-trial classification of motor-imagery EEG data across various CNN model training schemes depending on the scenarios of BCI usage. This proof-of-concept study demonstrates the feasibility of applying fuzzy fusion techniques to enhance CNN-based EEG decoding and benefit practical applications of BCI.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献