Why can we detect lianas from space?

Author:

Visser Marco D.ORCID,Detto MatteoORCID,Meunier Félicien,Wu Jin,Foster Jane,Marvin David C.,Bongalov Boris,Nunes Matheus Henrique,Coomes David,Verbeeck Hans,Guzmán Q J. Antonio,Sanchez-Azofeifa Arturo,Chandler Chris J.,van der Heijden Geertje M.F,Boyd Doreen S.,Foody Giles M.,Cutler Mark E.J.,Broadbent Eben N.,Serbin Shawn S.ORCID,Schnitzer Stefan,Rodríguez-Ronderos M. Elizabeth,Pacala Steve

Abstract

AbstractLianas are found in virtually all tropical forests and have strong impacts on the forest carbon cycle by slowing tree growth, increasing tree mortality and arresting forest succession. In a few local studies, ecologists have successfully differentiated lianas from trees using various remote sensing platforms including satellite images. This demonstrates a potential to use remote sensing to investigate liana dynamics at spatio-temporal scales beyond what is currently possible with ground-based inventory censuses. However, why do liana-infested tree crowns and forest stands display distinct spectral signals? And is the spectral signal of lianas only locally unique or consistent across continental and global scales? Unfortunately, we are not yet able to answer these questions, and without such an understanding the limitations and caveats of large-scale application of automated classifiers cannot be understood. Here, we tackle the questions of why we can detect lianas from airborne and spaceborne remote sensing platforms. We identify whether a distinct spectral distribution exists for lianas, when compared to their tree hosts, at the leaf, canopy and stand scales in the solar spectrum (400 to 2500 nm). To do so, we compiled databases of (i) leaf reflectance spectra for over 4771 individual leaves of 539 species, (ii) fine-scale (∼1m2) surface reflectance from 999 tree canopies characterized by different levels of liana infestation in Panama and Malaysia, and (iii) coarse-scale (>100 m2) surface reflectance from hundreds of hectares of heavily infested liana forest stands in French Guiana and Bolivia. Using these data, we find consistent spectral signal of liana-infested canopies across sites with a mean inter-site correlation of 89% (range 74-94%). However, as we find no consistent difference between liana and tree leaves, a distinct liana spectral signal appears to only manifests at the canopy and stand scales (>1m2). To better understand this signal, we implement mechanistic radiative transfer models capable of modeling the vertically stratificatied non-linear mixing of spectral signals intrinsic to lianas infestation of forest canopies. Next, we inversely fit the models to observed spectral signals of lianas at all scales to identify key biochemical or biophysical processes. We then corroborate our model results with field data on liana leaf chemistry and canopy structural properties. Our results suggest that a liana-specific spectral distribution arises due to the combination of cheaply constructed leaves and efficient light interception. A model experiment revealed that the spectral distribution was most sensitive to lower leaf and water mass per unit area, affecting the absorption of NIR and SWIR radiation, and a more planophile (flatter) leaf angle distribution. Finally, we evaluate the theoretical discernibility of lianas from trees and how this varies with remote sensing platforms and resolution. We end by discussing the potential, limitations and risks of applying automated classifiers to detect lianas from remotely sensed data at large scales.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3