Single cell infection with influenza A virus using drop-based microfluidics

Author:

Loveday Emma KateORCID,Sanchez Humberto S.ORCID,Thomas Mallory M.ORCID,Chang Connie B.ORCID

Abstract

SummaryInfluenza A virus (IAV) is an RNA virus with high genetic diversity which necessitates the development of new vaccines targeting emerging mutations each year. As IAV exists in genetically heterogeneous populations, current studies focus on understanding population dynamics at the single cell level. These studies include novel methodology that can be used for probing populations at the single cell level, such as single cell sequencing and microfluidics. Here, we introduce a drop-based microfluidics method to study IAV infection at a single cell level by isolating infected host cells in microscale drops. Single human alveolar basal epithelial (A549), Madin-Darby Canine Kidney cells (MDCK) and MDCK + human siat7e gene (Siat7e) cells infected with the pandemic A/California/07/2009 (H1N1) strain were encapsulated within 50 μm radii drops and incubated at 37°C. We demonstrate that drops remain stable over 24 hours, that 75% of cells remain viable, and that IAV virus can propagate within the drops. Drop-based microfluidics therefore enables single cell analysis of viral populations produced from individually infected cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3