Abstract
AbstractIn many organisms, sensory abilities develop and evolve according to the changing demands of navigating, foraging and communication across different environments and life stages. Teleost fish inhabit heterogeneous light environments and exhibit a large diversity in visual system properties among species. Cichlids are a classic example of this diversity, generated by different tuning mechanisms that involve both genetic factors and phenotypic plasticity. Here, we document the developmental progression of visual pigment gene expression in Lake Victoria cichlids and test if these patterns are influenced by variation in light conditions. We reared two sister species of Pundamilia to adulthood in two distinct visual conditions that resemble the two light environments that they naturally inhabit in Lake Victoria. We also included interspecific first-generation hybrids. We then quantified (using RT-qPCR) the expression of the four Pundamilia opsins (SWS2B, SWS2A, RH2A and LWS) at 14 time points. We find that opsin expression profiles progress from shorter-wavelength sensitive opsins to longer-wavelength sensitive opsins with increasing age, in both species and their hybrids. The developmental trajectories of opsin expression also responded plastically to the visual conditions. Finally, we found subtle differences between reciprocal hybrids, possibly indicating parental effects and warranting further investigation. Developmental and environmental plasticity in opsin expression may provide an important stepping stone in the evolution of cichlid visual system diversity.Research highlightsIn Lake Victoria cichlid fish, expression levels of opsin genes (encoding visual pigments) differ between developmental stages and between experimental light treatments. This plasticity may contribute to the evolution of cichlid visual system diversity.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献