Author:
Soriano Gonzalo,Kneeshaw Sophie,Jimenez-Alemán Guillermo,Zamarreño Angel M.,Franco-Zorrilla José Manuel,Rey-Stolle Valcarce Mª Fernanda,Barbas Coral,García-Mina Jose M.,Solano Roberto
Abstract
SUMMARYJasmonates are fatty acid derived hormones that regulate multiple aspects of plant development, growth and stress responses. Bioactive jasmonates, defined as the ligands of the conserved COI1 receptor, differ between vascular plants and bryophytes (using jasmonoyl-L-isoleucine; JA-Ile and dinor-12-oxo-10,15(Z)-phytodienoic acid; dn-OPDA, respectively). Whilst the biosynthetic pathways of JA-Ile in the model vascular plant Arabidopsis thaliana have been elucidated, the details of dn-OPDA biosynthesis in bryophytes are still unclear. Here, we identify an ortholog of Arabidopsis Fatty Acid Desaturase 5 (AtFAD5) in the model liverwort Marchantia polymorpha and show that FAD5 function is ancient and conserved between species separated by more than 450 million years of independent evolution. Similar to AtFAD5, MpFAD5 is required for the synthesis of 7Z-hexadecenoic acid. Consequently, in Mpfad5 mutants the hexadecanoid pathway is blocked, dn-OPDA levels almost completely depleted and normal chloroplast development is impaired. Our results demonstrate that the main source of dn-OPDA in Marchantia is the hexadecanoid pathway and the contribution of the octadecanoid pathway, i.e. from OPDA, is minimal. Remarkably, despite extremely low levels of dn-OPDA, MpCOI1-mediated responses to wounding and insect feeding can still be activated in Mpfad5, suggesting that dn-OPDA is not the only bioactive jasmonate and COI1 ligand in Marchantia.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献