Abstract
ABSTRACTPsychiatric disorders such as schizophrenia are commonly associated with structural brain alterations affecting the cortex, which frequently vary with clinically relevant factors including antipsychotic treatment, duration of illness and age of onset. While the underlying variables mediating these structural changes are poorly understood, recent genetic evidence suggests circulating metabolites and other biochemical traits play a causal role in a number of psychiatric disorders which could be mediated by changes in the cerebral cortex. In the current study, we leveraged publicly available genome-wide association study (GWAS) data to explore shared genetic architecture and evidence for causal relationships between a panel of 50 biochemical traits and measures of cortical thickness and surface area at both the global and regional levels. Linkage disequilibrium score regression identified a total of 20 significant and 156 suggestive genetically correlated biochemical-cortical trait pairings, of which six exhibited strong evidence for causality in a latent causal variable model. Interestingly, a negative causal relationship was identified between a unit increase in serum C-reactive protein levels and thickness of the lingual and lateral occipital regions that was also supported by Mendelian randomisation, while circulating vitamin D (25-hydroxyvitamin D) levels exhibited a positive causal effect on temporal pole thickness. Taken together, our findings suggest a subset of biochemical traits exhibit shared genetic architecture and potentially causal relationships with cortical thickness in functionally distinct regions, which may contribute to alteration of cortical structure in psychiatric disorders.
Publisher
Cold Spring Harbor Laboratory