Abstract
AbstractAtrial fibrillation (AF) is a common health problem with substantial individual and societal costs. The origin of AF has been debated for more than a century, and the precise, biophysical mechanisms that are responsible for the initiation and maintenance of the chaotic electrochemical waves that define AF, remains unclear. It is well accepted that the outlet of the pulmonary veins is the primary anatomical site of AF initiation, and that electrical isolation of these regions remains the most effective treatment for AF. Furthermore, it is well known that certain ion channel or transporter mutations can significantly increase the likelihood of AF. Here, we present a computational model capable of characterizing functionally important features of the microanatomical and electrophysiological substrate that represents the transition from the pulmonary veins (PV) to the left atrium (LA) of the human heart. This model is based on a finite element representation of every myocyte in a segment of this (PV/LA) region. Thus, it allows for investigation a mix of typical PV and LA myocytes. We use the model to investigate the likelihood of ectopic beats and re-entrant waves in a cylindrical geometry representing the transition from PV to LA. In particular, we investigate and illustrate how six different AF- associated mutations can alter the probability of ectopic beats and re-entry in this region.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献