SARS-CoV-2 infection activates dendritic cells via cytosolic receptors rather than extracellular TLRs

Author:

van der Donk Lieve E.H.ORCID,Eder JuliaORCID,van Hamme John L.,Brouwer Philip J.M.,Brinkkemper Mitch,van Nuenen Ad C.,van Gils Marit J.ORCID,Sanders Rogier W.,Kootstra Neeltje A.ORCID,Bermejo-Jambrina MartaORCID,Geijtenbeek Teunis B.H.ORCID

Abstract

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation and potentially multi-organ dysfunction. It remains unclear whether SARS-CoV-2 is sensed by pattern recognition receptors (PRRs) leading to immune activation. Several studies suggest that the Spike (S) protein of SARS-CoV-2 might interact with Toll-like receptor 4 (TLR4) and thereby activate immunity. Here we have investigated the role of TLR4 in SARS-CoV-2 infection and immunity. Neither exposure of isolated S protein, SARS-CoV-2 pseudovirus nor a primary SARS-CoV-2 isolate induced TLR4 activation in a TLR4-expressing cell line. Human monocyte-derived dendritic cells (DCs) express TLR4 but not ACE2, and DCs were not infected by a primary SARS-CoV-2 isolate. Notably, neither S protein nor the primary SARS-CoV-2 isolate induced DC maturation or cytokines, indicating that both S protein and SARS-CoV-2 virus particles do not trigger extracellular TLRs, including TLR4. Ectopic expression of ACE2 in DCs led to efficient infection by SARS-CoV-2. Strikingly, infection of ACE2-positive DCs induced type I IFN and cytokine responses, which was inhibited by antibodies against ACE2. These data strongly suggest that not extracellular TLRs but intracellular viral sensors are key players in sensing SARS-CoV-2. These data imply that SARS-CoV-2 escapes direct sensing by TLRs, which might underlie the lack of efficient immunity to SARS-CoV-2 early during infection.Author summaryThe immune system needs to recognize pathogens such as SARS-CoV-2 to initiate antiviral immunity. Dendritic cells (DCs) are crucial for inducing antiviral immunity and are therefore equipped with both extracellular and intracellular pattern recognition receptors to sense pathogens. However, it is unknown if and how SARS-CoV-2 activates DCs. Recent research suggests that SARS-CoV-2 is sensed by extracellular Toll-like receptor 4 (TLR4). We have previously shown that DCs do not express ACE2, and are therefore not infected by SARS-CoV-2. Here we show that DCs do not become activated by exposure to viral Spike proteins or SARS-CoV-2 virus particles. These findings suggest that TLR4 and other extracellular TLRs do not sense SARS-CoV-2. Next, we expressed ACE2 in DCs and SARS-CoV-2 efficiently infected these ACE2-positive DCs. Notably, infection of ACE2-positive DCs induced an antiviral immune response. Thus, our study suggests that infection of DCs is required for induction of immunity, and thus that intracellular viral sensors rather than extracellular TLRs are important in sensing SARS-CoV-2. Lack of sensing by extracellular TLRs might be an escape mechanism of SARS-CoV-2 and could contribute to the aberrant immune responses observed during COVID-19.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3