Author:
Moritz Lindsay,Schon Samantha B.,Rabbani Mashiat,Sheng Yi,Pendlebury Devon F.,Agrawal Ritvija,Sultan Caleb,Jorgensen Kelsey,Zheng Xianing,Diehl Adam,Ragunathan Kaushik,Hu Yueh-Chiang,Nandakumar Jayakrishnan,Li Jun Z.,Boyle Alan P.,Orwig Kyle E.,Redding Sy,Hammoud Saher Sue
Abstract
SummaryConventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by passive electrostatics between DNA and the arginine-rich core of protamines. However, phylogenetic analysis reveals several non-arginine residues that are conserved within, but not across, species. The functional significance of these residues or post-translational modifications are poorly understood. Here, we investigated the functional role of K49, a rodent-specific lysine residue in mouse protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In vivo, an alanine substitution (P1 K49A) results in ectopic histone retention, decreased sperm motility, decreased male fertility, and in zygotes, premature P1 removal from paternal chromatin. In vitro, the P1 K49A substitution decreases protamine-DNA binding and alters DNA compaction/decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential to ensure reproductive fitness.
Publisher
Cold Spring Harbor Laboratory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献