CRISPR-Cas Inhibits Natural Transformation Through Altruistic Group Defense and Self-Sacrifice

Author:

Cooper Robert M.ORCID,Hasty Jeff

Abstract

SummaryCRISPR-Cas systems present an evolutionary tradeoff: does defense against phages and other parasitic DNA also prevent cells from acquiring potentially helpful new genes? Genomic analyses of this conundrum have arrived at often contradictory conclusions. Meanwhile, experimental studies have focused mainly on phages, conjugation, or artificial transformation, but less work has examined natural competence, a major driver of evolution and antibiotic resistance. Here, we use Acinetobacter baylyi, which combines high natural competence with a functional CRISPR-Cas system, to experimentally probe the interactions between CRISPR-Cas and natural competence. In these bacteria, the endogenous CRISPR array largely allows natural transformation by targeted DNA. However, CRISPR-Cas then kills the newly autoimmune cells in a form of programmed cell death. CRISPR-Cas often allows self-targeting cells to form colonies, albeit with fitness costs. Thus CRISPR-Cas appears to block natural transformation in a process more akin to altruistic group defense than an individual immune system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3