Blood variation implicates respiratory limits on elevational ranges of Andean birds

Author:

Linck Ethan B.ORCID,Williamson Jessie L.ORCID,Bautista Emil,Beckman Elizabeth J.ORCID,Benham Phred M.ORCID,DuBay Shane G.ORCID,Flores L. Monica,Gadek Chauncey R.ORCID,Johnson Andrew B.,Jones Matthew R.ORCID,Núñez-Zapata JanoORCID,Quiñonez AlessandraORCID,Schmitt C. JonathanORCID,Susanibar Dora,Jorge Tiravanti C.ORCID,Verde-Guerra Karen,Wright Natalie A.ORCID,Valqui ThomasORCID,Storz Jay F.ORCID,Witt Christopher C.ORCID

Abstract

AbstractThe extent to which species ranges reflect intrinsic physiological tolerances is a major, unsolved question in evolutionary ecology. To date, consensus has been hindered by the limited tractability of experimental approaches across most of the tree of life. Here, we apply a macrophysiological approach to understand how hematological traits related to oxygen transport shape elevational ranges in a tropical biodiversity hotspot. Along Andean elevational gradients, we measured traits that affect blood oxygen-carrying capacity—total and cellular hemoglobin concentration and hematocrit—for 2,355 individuals of 136 bird species. We used these data to evaluate the influence of hematological traits on elevational ranges. First, we asked whether hematological plasticity is predictive of elevational range breadth. Second, we asked whether variance in hematological traits changed as a function of distance from the midpoint of the elevational range. We found that the correlation between hematological plasticity and elevational range breadth was slightly positive, consistent with a facilitative role for plasticity in elevational range expansion. We further found reduced local variation in hematological traits near elevational range limits and at high elevations, patterns consistent with intensified natural selection, reduced effective population size, or compensatory changes in other cardiohematological traits with increasing distance from species-specific optima for oxygen availability. Our findings suggest that constraints on hematological plasticity and local genetic adaptation to oxygen availability promote the evolution of the narrow elevational ranges that underpin tropical montane biodiversity.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3