A network-based approach to integrate nutrient environment in the prediction of synthetic lethality in cancer metabolism

Author:

Apaolaza Iñigo,José-Eneriz Edurne San,Valcarcel Luis V.ORCID,Agirre Xabier,Prósper Felipe,Planes Francisco J.

Abstract

Synthetic Lethality (SL) is a promising concept in cancer research. A number of computational methods have been developed to predict SL in cancer metabolism, among which our network-based computational approach, based on genetic Minimal Cut Sets (gMCSs), can be found. A major challenge of these approaches to SL is to systematically consider tumor environment, which is particularly relevant in cancer metabolism. Here, we propose a novel definition of SL for cancer metabolism that integrates genetic interactions and nutrient availability in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase inhibition in different environments. Finally, our novel approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3