Abstract
Synthetic Lethality (SL) is a promising concept in cancer research. A number of computational methods have been developed to predict SL in cancer metabolism, among which our network-based computational approach, based on genetic Minimal Cut Sets (gMCSs), can be found. A major challenge of these approaches to SL is to systematically consider tumor environment, which is particularly relevant in cancer metabolism. Here, we propose a novel definition of SL for cancer metabolism that integrates genetic interactions and nutrient availability in the environment. We extend our gMCSs approach to determine this new family of metabolic synthetic lethal interactions. A computational and experimental proof-of-concept is presented for predicting the lethality of dihydrofolate reductase inhibition in different environments. Finally, our novel approach is applied to identify extracellular nutrient dependences of tumor cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different malignancies.
Publisher
Cold Spring Harbor Laboratory