Reprogramming the neuroblastoma epigenome with a mitochondrial uncoupler

Author:

Jiang HaowenORCID,Greathouse Rachel L,He BoORCID,Li Yang,Li Albert M.,Forgo Balint,Yip Michaela,Li Allison,Shih Moriah,Banuelos Selene,Zhou Meng-Ning,Gruber Joshua J.ORCID,Shimada Hiroyuki,Chiu Bill,Ye JiangbinORCID

Abstract

AbstractDysregulated DNA methylation is associated with poor prognosis in cancer patients, promoting tumorigenesis and therapeutic resistance1. DNA methyltransferase inhibitors (DNMTi) reduce DNA methylation and promote cancer cell differentiation, with two DNMTi already approved for cancer treatment2. However, these drugs rely on cell division to dilute existing methylation, thus the ‘demethylation’ effects are achieved in a passive manner, limiting their application in slow-proliferating tumor cells. In this study we use a mitochondrial uncoupler, niclosamide ethanolamine (NEN), to actively achieve global DNA demethylation. NEN treatment promotes DNA demethylation by activating electron transport chain (ETC) to produce α-ketoglutarate (α-KG), a substrate for the DNA demethylase TET. In addition, NEN inhibits reductive carboxylation, a key metabolic pathway to support growth of cancer cells with defective mitochondria or under hypoxia. Importantly, NEN treatment reduces 2-hydroxyglutarate (2-HG) generation and blocks DNA hypermethylation under hypoxia. Together, these metabolic reprogramming effects of NEN actively alter the global DNA methylation landscape and promote neuroblastoma differentiation. These results not only support Warburg’s original hypothesis that inhibition of ETC causes cell de-differentiation and tumorigenesis, but also suggest that mitochondrial uncoupling is an effective metabolic and epigenetic intervention that remodels the tumor epigenome for better prognosis.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. Targeting the cancer epigenome for therapy

2. Concise Drug Review: Azacitidine and Decitabine

3. Characterization of human neuroblastoma cell lines established before and after therapy;Journal of the National Cancer Institute,1986

4. Metabolic Profiling Reveals a Dependency of Human Metastatic Breast Cancer on Mitochondrial Serine and One-Carbon Unit Metabolism

5. Freeware tool for analysing numbers and sizes of cell colonies;Radiation and Environmental Biophysics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3