HypVW is an HOCl-Sensing Two Component System in Escherichia coli

Author:

El Hajj Sara,Henry Camille,Vergnes Alexandra,Loiseau Laurent,Brasseur Gaël,Barré Romain,Aussel Laurent,Ezraty BenjaminORCID

Abstract

ABSTRACTTwo component systems (TCS) are signalling pathways that allow bacterial cells to sense, respond and adapt to fluctuating environments. Among the classical TCS of Escherichia coli, YedVW has been recently showed to be involved in the regulation of msrPQ, encoding for the periplasmic methionine sulfoxide reductase system. In this study, we demonstrate that hypochlorous acid (HOCl) induces the expression of msrPQ in a YedVW dependant manner, whereas H2O2, NO and paraquat (a superoxide generator) do not. Therefore, YedV appears to be an HOCl-sensing histidine kinase. Based on this finding, we proposed to rename this system HypVW. Moreover, using a directed mutagenesis approach, we show that Met residues located in the periplasmic loop of HypV (formerly YedV) are important for its activity. Given that HOCl oxidizes preferentially Met residues, we bring evidences that HypV could be activated via the reversible oxidation of its methionine residues, thus conferring to MsrPQ a role in switching HypVW off. Based on these results, we propose that the activation of HypV by HOCl could occur through a Met redox switch. HypVW appears to be the first characterized TCS able to detect HOCl in E. coli. This study represents an important step in understanding the mechanisms of reactive chlorine species resistance in prokaryotes.IMPORTANCEUnderstanding molecularly how bacteria respond to oxidative stress is crucial to fight pathogens. HOCl is one of the most potent industrial and physiological microbiocidal oxidant. Therefore, bacteria have developed counterstrategies to survive HOCl-induced stress. Over the last decade, important insights into these bacterial protection factors have been obtained. Our work establishes HypVW as an HOCl-sensing two component system in Escherichia coli MG1655 which regulates the expression of the periplasmic HOCl-oxidized proteins repair system MsrPQ. Moreover we bring evidences suggesting that HOCl could activate HypV through a methionine redox switch.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3