Hemodynamic Correlates of Fluctuations in Neuronal Excitability: A Simultaneous Paired Associative Stimulation (PAS) and functional Near Infra-Red Spectroscopy (fNIRS) Study

Author:

Cai ZhengchenORCID,Pellegrino GiovanniORCID,Spilkin Amanda,Delaire EdouardORCID,Uji MakotoORCID,Abdallah Chifaou,Lina Jean-Marc,Fecteau Shirley,Grova ChristopheORCID

Abstract

AbstractBackgroundThe relationship between task-related hemodynamic activity and brain excitability is poorly understood in humans as it is technically challenging to combine simultaneously non-invasive brain stimulation and neuroimaging modalities. Cortical excitability corresponds to the readiness to become active and as such it may be linked to metabolic demand.HypothesesCortical excitability and hemodynamic activity are positively linked so that increases in hemodynamic activity correspond to increases in excitability and vice-versa.MethodsFluctuations of excitability and hemodynamic activity were investigated via simultaneous Transcranial Magnetic Stimulation (TMS) and functional Near Infrared Spectroscopy (fNIRS). Sixteen healthy subjects participated in a sham-controlled, pseudorandomized, counterbalanced study with PAS (PAS10/PAS25/Sham) on the right primary motor cortex (M1). The relationship between M1 excitability (Motor Evoked Potentials, MEP) and hemodynamic responses to finger tapping reconstructed via personalized fNIRS was assessed.ResultsHemodynamic activity exhibited a significant correlation with cortical excitability: increased HbO and HbR (absolute amplitude) corresponded to increased excitability and vice-versa (r=0.25; p=0.03 and r=0.16; p=0.17, respectively). The effect of PAS on excitability and hemodynamic activity showed a trend of positive correlation: correlation of MEP ratios (post-PAS/pre-PAS) with HbO and HbR ratios (r=0.19, p=0.29; r=0.18, p=0.30, respectively).ConclusionsTMS-fNIRS is a suitable technique for simultaneous investigation of excitability and hemodynamic responses and indicates a relationship between these two cortical properties. PAS effect is not limited to cortical excitability but also impacts hemodynamic processes. These findings have an impact on the application of neuromodulatory interventions in patients with neuropsychiatric disorders.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3