Evaluation of cell segmentation methods without reference segmentations

Author:

Chen Haoran,Murphy Robert F.ORCID

Abstract

AbstractCell segmentation is a cornerstone of many bioimage informatics studies. Inaccurate segmentation introduces computational error in downstream cellular analysis. Evaluating segmentation results is thus a necessary step for developing segmentation methods as well as for choosing the most appropriate method for a particular type of tissue or image. The evaluation process has typically involved comparison of segmentations to those generated by humans, which can be expensive and subject to unknown bias. We present here an approach that seeks to evaluate cell segmentation methods without relying upon comparison to results from humans. For this, we defined a number of segmentation quality metrics that can be applied to multichannel fluorescence images. We calculated these metrics for 11 previously-described segmentation methods applied to datasets from 4 multiplexed microscope modalities covering 5 tissues. Using principal component analysis to combine the metrics we defined an overall cell segmentation quality score and ranked the segmentation methods. All code and data are available in a Reproducible Research Archive.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3