Enzyme Aggregation and Fragmentation Induced by Catalysis Relevant Species

Author:

Gentile Kayla,Bhide Ashlesha,Kauffman Joshua,Ghosh Subhadip,Maiti Subhabrata,Adair James,Lee Tae Hee,Sen AyusmanORCID

Abstract

It is usually assumed that enzymes retain their native structure during catalysis. However, the aggregation and fragmentation of proteins can be difficult to detect and sometimes conclusions are drawn based on the assumption that the protein is in its native form. We have examined three model enzymes, alkaline phosphatase (AkP), hexokinase (HK) and glucose oxidase (GOx). We find that these enzymes aggregate or fragment after addition of chemical species directly related to their catalysis. We used several independent techniques to study this behavior. Specifically, we found that glucose oxidase and hexokinase fragment in the presence of D-Glucose but not L-glucose, while hexokinase aggregates in the presence of Mg2+ ion and either ATP or ADP at low pH. Alkaline phosphatase aggregates in the presence of Zn2+ ion and inorganic phosphate. The aggregation of hexokinase and alkaline phosphatase does not appear to attenuate their catalytic activity. Our study indicates that specific multimeric structures of native enzymes may not be retained during catalysis and suggests pathways for different enzymes to associate or separate over the course of substrate turnover.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3