Origin of electroneutrality in living system

Author:

Akbari Amir,Palsson Bernhard O.

Abstract

AbstractIdentifying the first chemical transformations, from which life emerged is a central problem in the theories of life’s origins. These reactions would likely have been self-sustaining and self-reproductive before the advent of complex biochemical pathways found in modern organisms to synthesize lipid membranes, enzymes, or nucleic acids. Without lipid membranes and enzymes, exceedingly low concentrations of the organic intermediates of early metabolic cycles in protocells would have significantly hindered evolvability. To address this problem, we propose a mechanism, where a positive membrane potential elevates the concentration of the organic intermediates. In this mechanism, positively charged surfaces of protocell membranes due to accumulation of transition metals generate positive membrane potentials. We compute steady-state ion distributions and determine their stability in a protocell model to identify the key factors constraining achievable membrane potentials. We find that (i) violation of electroneutrality is necessary to induce nonzero membrane potentials; (ii) strategies that generate larger membrane potentials can destabilize ion distributions; and (iii) violation of electroneutrality enhances osmotic pressure and diminishes reaction efficiency, thereby driving the evolution of lipid membranes, specialized ion channels, and active transport systems.SignificanceThe building blocks of life are constantly synthesized and broken down through concurrent cycles of chemical transformations. Tracing these reactions back 4 billion years to their origins has been a long-standing goal of evolutionary biology. The first metabolic cycles at the origin of life must have overcome several obstacles to spontaneously start and sustain their nonequilibrium states. Notably, maintaining the concentration of organic intermediates at high levels needed to support their continued operation and subsequent evolution would have been particularly challenging in primitive cells lacking evolutionarily tuned lipid membranes and enzymes. Here, we propose a mechanism, in which the concentration of organic intermediates could have been elevated to drive early metabolic cycles forward in primitive cells with ion-permeable porous membranes under prebiotic conditions and demonstrate its feasibility in a protocell model from first principles.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3