Determining jumping performance from a single body-worn accelerometer using machine learning

Author:

White MarkORCID,Bezodis NeilORCID,Neville JonathonORCID,Summers HuwORCID,Rees PaulORCID

Abstract

External peak power in the countermovement jump is frequently used to monitor athlete training. The gold standard method uses force platforms, but they are unsuitable for field-based testing. However, alternatives based on jump flight time or Newtonian methods applied to inertial sensor data have not been sufficiently accurate for athlete monitoring. Instead, we developed a machine learning model based on characteristic features (functional principal components) extracted from a single body-worn accelerometer. Data were collected from 69 male and female athletes at recreational, club or national levels, who performed 696 jumps in total. We considered vertical countermovement jumps (with and without arm swing), sensor anatomical locations, machine learning models and whether to use resultant or triaxial signals. Using a novel surrogate model optimisation procedure, we obtained the lowest errors with a support vector machine when using the resultant signal from a lower back sensor in jumps without arm swing. This model had a peak power RMSE of 2.3 W·kg-1 (5.1% of the mean), estimated using nested cross validation and supported by an independent holdout test (2.0 W·kg-1). This error is lower than in previous studies, although it is not yet sufficiently accurate for a field-based method. Our results demonstrate that functional data representations work well in machine learning by reducing model complexity in applications where signals are aligned in time. Our optimisation procedure also was shown to be robust can be used in wider applications with low-cost, noisy objective functions.

Publisher

Cold Spring Harbor Laboratory

Reference99 articles.

1. Differences in Strength and Power Among Junior-High, Senior-High, College-Aged, and Elite Professional Rugby League Players

2. The Relation Between Running Speed and Measures of Strength and Power in Professional Rugby League Players;J Strength Cond Res,1999

3. The Relation Between Strength and Power in Professional Rugby League Players;J Strength Cond Res,1999

4. Leg power and hopping stiffness: relationship with sprint running performance

5. Physiological and anthropometric characteristics of starters and non-starters and playing positions in elite Australian Rules football: a case study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3