Pseudomonas aeruginosa synthesizes the autoinducers of its oxylipin-dependent quorum sensing system extracellularly

Author:

Martínez Eriel,Orihuela Carlos J.ORCID,Campos-Gomez Javier

Abstract

ABSTRACTThe oxylipin-dependent quorum sensing system (ODS) of Pseudomonas aeruginosa relies on the production and sensing of two oxylipin autoinducers, 10S-hydroxy-(8E)-octadecenoic acid (10-HOME) and 7S,10S dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Here, and contrary to the prevailing notion that bacterial autoinducers are synthesized intracellularly, we show that 10-HOME and 7,10-DiHOME biosynthesis occurs extracellularly, and this requires the secretion of the oxylipin synthases. We implemented a genetic screen of P. aeruginosa strain PAO1, which identified fourteen genes required for the synthesis of oxylipins. Among the identified genes, four encoded components of the ODS system and the other ten were part of the Xcp type II secretion system (T2SS). We created a deletion mutant of xcpQ, which encodes the outer membrane component of Xcp, and found it recapitulated the impaired functionality of the transposon mutants. Upon further examination, the lack of ODS function was demonstrated to be caused by the blocking of the DS enzymes secretion. Notably, the xcpQ mutant activated the ODS system when exposed to 10-HOME and 7,10-DiHOME, indicating that the sensing component of this quorum sensing system remains fully functional. In contrast with the detrimental effect previously described for T2SS in biofilm formation, here we observed that T2SS was required for robust in vitro and in vivo biofilm formation in an ODS dependent manner. To the best of our knowledge, this study is the first to find QS autoinducers that are synthetized in the extracellular space and provides new evidence for the role of the T2SS for biofilm formation in P. aeruginosa.IMPORTANCEWe previously showed that the ODS quorum sensing system of P. aeruginosa produces and responds to oxylipins derived from host oleic acid by enhancing biofilm formation and virulence. Herein, we developed a genetic screen strategy to explore the molecular basis for oxylipins synthesis and detection. Unexpectedly, we found that the ODS autoinducer synthases cross the outer membrane using the Xcp Type 2 secretion system of P. aeruginosa and thus, the biosynthesis of oxylipins occur extracellularly. Biofilm formation, which was thought to be impaired as result of Xcp activity, was found to be enhanced as result of ODS activation. This is a unique QS system strategy and reveals a new way by which P. aeruginosa interacts with the host environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3