Discovery of cell active macrocyclic peptides with on-target inhibition of KRAS signaling

Author:

Lim Shuhui,Boyer Nicolas,Boo Nicole,Huang Chunhui,Venkatachalam Gireedhar,Juang Yu-Chi Angela,Garrigou Michael,Kaan Kristal,Duggal Ruchia,Peh Khong Ming,Sadruddin Ahmad,Gopal Pooja,Yuen Tsz Ying,Ng Simon,Kannan Srinivasaraghavan,Brown Christopher J.,Verma Chandra,Orth Peter,Peier Andrea,Ge Lan,Yu Xiang,Bhatt Bhavana,Chen Feifei,Wang Erjia,Li Nianyu Jason,Gonzales Raymond J.,Stoeck Alexander,Henry Brian,Sawyer Tomi K.,Lane David,Johannes Charles W.,Biswas Kaustav,Partridge Anthony W.ORCID

Abstract

AbstractRAS is the most commonly mutated oncogene in human cancers and RAS-driven tumors are amongst the most difficult to treat. Historically, discovery of therapeutics targeting this protein has proven challenging due to a lack of deep hydrophobic pockets to which a small molecule might bind. The single such pocket available is normally occupied by GDP or GTP which have millimolar cellular concentrations and picomolar affinities for KRAS and hence is challenging to target. The recent FDA approval of sotorasib, a covalent modifier of the KRASG12C mutant protein, has clinically validated KRAS as an oncology target. However, traditional challenges remain for targeting the more common KRAS mutations such as G12D and G12V. As an alternative approach, we investigated the superior binding capacity of macrocyclic peptides to identify KRAS inhibitory molecules. We focused on the recently reported disulfide-cyclized arginine-rich peptide KRpep-2d, discovered through phage display and previously independently confirmed by us as a bona fide KRAS binder. To mitigate intracellular disulfide reduction and loss of binding, we identified an alternate cyclization motif by inverting the configuration of Cys5 and linking it to Cys15 through a thioacetal bridge. The corresponding peptide bound KRAS through cis isomerization of the peptide bond between D-Cys5 and Pro6 as observed through x-ray crystallography. Prototypic molecules displayed measurable cellular inhibition of RAS signaling without membrane lysis and counter-screen off-target activity. An analogue containing azido-lysine confirmed the cell penetrant nature of this molecule using our recently reported NanoClick assay. To improve cellular activity, we sought to improve proteolytic stability. Structure-activity relationship studies identified key scaffold residues critical for binding and revealed that replacement of N- and C-terminal arginine residues with D-arginines and introduction of an α-methyl moiety at Ser10 resulted in a molecule with improved proteolytic stability as indicated by its persistence in whole cell homogenate. The resulting peptide MP-3995 had improved and sustained cell-based efficacy. On-target activity was validated through confirmation of target engagement, lack of signaling in irrelevant pathways, and use of non-binding control peptides. Mechanism of action studies suggested that peptide binding to both GDP- and GTP-states of KRAS may contribute to cellular activity. Although validated as bona fide and on-target inhibitors of cell based KRAS signaling, this series is unlikely to advance to the clinic in its current form due to its arginine-dependent cell entry mechanism. Indeed, we showed a strong correlation between net positive charge and histamine release in an ex vivo assay making this series challenging to study in vivo. Nonetheless, these molecules provide valuable templates for further medicinal chemistry efforts aimed at leveraging this unique inhibitory binding site on KRAS.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3